Really? Please enlighten us.
- Airfoils generate lift because they are curved on top and flat on the bottom
The typical "cartoon" airfoils date back to the 1914 though 1930s, but many "modern" airfoils are curved on the bottom as well as the top. Super critical airfoils are pretty flat on top and curved on the bottom. If your explanation of lift depends on the above misinformation, your explanation is wrong.
- Air flowing over the top and bottom gets to the trailing edge at the same time.
If this were true, aircraft as we know them could not fly. There just is not enough difference in distances. Plus any wind tunnel data shows this to not be true.
- Newton's laws do not explain the low pressure on top of an airfoil.
If Newton's laws don't explain the low pressure, then Bernoulli's equation can't either. (Contrary to what a Scientific American article mentioned above claims.) It takes about two pages of algebra to derive Bernoulli's equation from Newtons laws (plus the assumptions that make make Bernoulli's equation valid in the first place). So, anything explained by Bernoulli is just a few steps away from being explained by Newton. And, in fact, Newton's laws do a much better job of explaining the low pressure on top than Bernoulli as we will get to below.
- There are two components of life - Newton on the bottom, and Bernoulli on the top
The laws of physics do not change from one side of an airfoil to the other. Both Bernoulli and Newton apply on both sides. Newton's equations have broad applications, Bernoulli is much more focused.
- Bernoulli's principle provides an adequate explanation for the low pressure on top of a wing.
Bernoulli's principal describes the conservation of energy along a streamline. In other words, the sum of the potential and kinetic energies is constant along a streamline as long as energy is not added or removed from that streamline. Nothing more, nothing less. This is what leads to the "faster is lower pressure" thing. So, if you want to explain the low pressure, you first have to explain the faster velocity - and that has nothing to do with Bernoulli. Now, one legitimate way way to explain the higher velocity is to turn to circulation - but the concept is not that intuitive for a non math/engineering/physics person. I suspect that a lot of the fairy tales that pass for explanations of lift (including everything on this list) come from attempts to use Bernoulli while attempting to come up with some "plausible" explanation for the velocity difference.
- Blowing over a sheet of paper demonstrates Bernoulli's principle.
If the paper lifts, then energy from the jet of bad breath was transferred out of the stream to the paper - this violates the conservation of energy that is the basis of Bernoulli's equation. Also, given that the air around the paper is at a lower static pressure than the air inside your mouth then the total pressure around the paper and in the jet are different, so without a bunch of measurement and math, you can't say that the pressure in the jet is lower than the ambient pressure. This does, however, demonstrate that air has viscosity and that people don't understand Bernoulli's principle.
- Air bouncing off the bottom of an airfoil creates "Newtonian" lift.
Air is a fluid, it does not behave like billiard balls. The air actually flows parallel to the surface and starts to turn before it gets to the surface. If the streamlines "bounced" off the bottom, then you would have streamlines crisscrossing and flowing in multiple directions at the same place and time.
- Pressure does not explain all of lift.
The very definition of pressure is the normal force (perpendicular) exerted by a fluid on a surface. The force tangent (parallel) to the surface is drag. There is no "transfer of momentum" that does not involve pressure.
- A wing works like a venturi.
There are more things wrong with this than you can shake a stick at. The idea is that there is "streamline squeezing" that results in a faster velocity / lower pressure on top of the wing and something else is happening on the bottom. Now, it is true that flow past an obstruction will cause the air to accelerate resulting in a lower pressure - but the effect of thickness changes the pressure on both the top and bottom of the wing. Also, were this true, if you put a airplane/bird/helicopter/multicopter in a box sitting on a scale, the weight of the box and device would be reduced as the device flies. I have done this experiment - the weight does not change on liftoff. And, beyond that, consider what happens when you put the flaps down - you are squeezing the streamlines under the flaps which should result in low pressure and a reduction of lift. And, the closer you get to the runway, the stronger this effect becomes (per the Venturi equation) and flaps would cause your airplane to be sucked into the ground an wrecked. I'm pretty sure that doesn't happen. Also, consider your balsa glider - at a positive angle of attack the streamline are squeezed underneath which should result in negative lift so a balsa glider would work exactly opposite to a "real" wing - 100% wrong. I could go on with more examples.
When real life and a "theory" predict the opposite things, one has to suspect the "theory".